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ABSTRACT

Generally, classical polynomial splines tend to exhibit unwanted undulations. In
this work, we discuss a technique, based on control principles, for eliminating these
undulations and increasing the smoothness properties of the spline interpolants. We
give a generalization of the classical polynomial splines and show that this general-
ization is, in fact, a family of splines that covers the broad spectrum of polynomial,
trigonometric and exponential splines. A particular element in this family is deter-
mined by the appropriate control data. It is shown that this technique is easy to
implement.

Several numerical and curve-fitting examples are given to illustrate the advantages
of this technique over the classical approach. Finally, we discuss the convergence

properties of the interpolant.
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CHAPTER I
INTRODUCTION

In this work, we study the control problem

%"(t) _ A&(t) + Bil(t), (1.1)
§(t) = Cz(t)

with the cost function

Iy = [ 3 BOP (12)
k=0

Here, € R™, e RP, € L2 (Q,R!), t € Q C R, and 4 € L(R™,R™), B € L(R',R™)
and C € L(R™,RP). The vectors ¥ and @ are the state and control vectors of the
system, respectively. A is called the state matrix, B the control matrix and C the
observation matrix.

Our goal is to find the control # that will drive the system from one point to the
other in the state space R™ and at the same time minimizes the cost function J(u).
We will also establish controllability conditions of the system (given the cost function
J(u)) and then apply the results to spline approximation problems.

It has been shown [13] that the system (1.1) is controllable if and only if the
matrix

Z=( B AB ... A™'B ) (1.3)

has rank m and that
M = {(A,B) : £ = AT + Bi is controllable} (1.4)

is a manifold in R™™+) [14]. Anderson and Moore [2], Luenberger [23], and Sage
(28] have dealt extensively with the optimal control problem when the cost function
is J(u) = J,u®dt (the minimum energy problem). Conditions for controllability of
the system are also given {23].

Spline interpolation constitutes a class of piecewise polynomial approximation
that is commonly used when approximating many of the functions that arise in ac-

tual physical processes. Spline approximations of functions are preferred to most
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approximation and interpolation methods because of their inherent smoothness prop-
erties [10]. In [21], the minimal property associated with spline approximation is
shown. A great deal of work has been done on polynomial splines, particularly cubic
splines [11]. In [6] the convergence properties of a special class of quintic splines are
discussed. There is a small amount of literature on exponential splines [7, 15, 24, 26].
McCartin [24] has given an excellent theortical discussion of exponential splines and
also studied its convergence rates and extremal properties. Pruess [26, 27] asserts
that exponential splines can produce co-convex and co-montone interpolants.

In their paper [30], Zhang, Tomlinson, and Martin show the relationship between
control theory and spline approximation by studying the minimum energy problem,

namely: minimize
T
J(u) =/ u?(s) ds
0

subject to p
SE(t) = AF(t) + bu(t), telo,T)

or equivalently
t bead
£(t) = e*%(0) +/ eAt=pu(s) ds.
0

In this case, they obtained the optimal control law by observing that the operator
K : L,[0,T] — R™

defined by
T -
Ku = / eMT=bu(s) ds
0

has an adjoint given by
K*Z=5et Tz
for any zZ € R™. Thus, the optimal control can be written as

u=K'(KK*)"Y&(T) — e*TZ(0)).

(The interested reader should see Luenberger [23] or any other standard text on
functional analysis for more details.) By imposing certain smoothness requirements
on u(t), they were able to obtain the spline functions. However, this approach does not

eliminate the undulations associated with classical polynomial splines. In an attempt
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to overcome this problem, we introduce into the cost function, J(u), derivatives of
the control law u(t) and hence, formulate our problem in the sobolev space H™(Q2).
In this work, we intend to use optimal control theory to develop methodology for
spline approximations. As an illustration, suppose that the write-head of a computer
is required to move from a certain position, £(to), to another position, Z(T), then
some control u(t) is needed to drive the write-head from the initial state, F(0), to the
final state, Z(T). Thus, the write-head (the system) must go through a certain set of

points, namely,

(to, i:(tﬂ))1 (tla f(tl))a sy (tn—la f(tn—l))a (tnaf(tn))
0=ty <ty <...<tn_1<tn=T

at given times. A spline curve can be fitted through these data points and then a
control that takes the system through this trajectory determined. We hope to find
the set of controls
wil(t) : Z(tio1) S #(t)

that achieves this while minimizing the functional J(u). Then, by applying the appro-
priate smoothness requirements of u(t) at the endpoints of each subinterval, [tiz1, ti,
we will obtain and characterize the class of spline approximations. Numerical exam-
ples will be given to demonstrate the advantages of this technique.

The work has been divided into several parts. In Chapter II, we formulate the
control problem in the space

H™(Q) = {u € Ly(Q)|D’u € L(Q), j€Z, 0<j5<n}

We also discuss some of the basic concepts in systems theory and control. Further-
more, a brief discussion of some of the properties of the space H"({2), including the
relevant embedding theorems, is given. In Chapter III, optimal control is discussed.
The control problem is transformed into a system of boundary value problems and,
by applying standard techniques for solving BV Ps, the desired optimal control law
is obtained. Chapter IV deals with the derivation of spline functions by imposing
appropriate smoothness conditions on the optimal control law obtained in Chapter
I11. The splines are then classified by studying the structure of the basis functions.
Finally, in Chapter V, results of computer simulations and a discussion of rates of

convergence are given.




CHAPTER II
FORMULATION OF THE PROBLEM

2.1 Motivation
In order to motivate the importance of developing the relationship between control
theory and spline functions, we first present an example that is of great practical

importance.
Example 2.1 The dynamics of a computer disk drive.

Consider the disk-drive of a computer system. It can be modelled as an inertia system

with governing equation given by:
M(8)8 +C(0,0)0 + K(8)6 = f(6) (2.1)

where M(6) represents a generalized inertia term and is positive definite, C(6, 9) is
generalized damping function, K () is a generalized stiffness function, and f() is a

forcing function. Linearizing the system at 0, we obtain
i+ Hy& + Hyz = M7 (0)f. (2.2)
Transforming equation (2.2) into a system of first-order equations, we obtain
7=AZ+ Bf (2.3)

where 7 = (z,,2)T, Ty =z, 22 =&

and

Equation (2.3) expresses the system dynamics in state-space form. Now, suppose that
the write-head is required to move from a certain (initial) position, Z(ts), to another
(final) position, #(t;). Then, the input function, f, must be chosen appropriately



to drive the system from the initial state, #(to), to the final state, Z(t 1), following a

certain trajectory. Thus, the write-head must pass through a certain set of points

(tﬂv E(t()))a RS (tm Z(tn))a

0=t0<t1<...<tn_1<tn=T

at given times. A spline curve can be fitted through this set of points and then
a control that takes the system through this trajectory determined. We can find
several such functions, f, that will drive the system through the specified set of
points. However, a more interesting problem is to find the function, f, that not
only drives the system from one point to another in state-space but also minimizes
a certain fuctional, J(f). This kind of problem will be solved in a general setting
and by forcing f to satisfy certain smoothness conditions at specified points, we will

obtain and characterize the class of spline functions.

2.2 Basic Systems Theory Concepts in Finite-Dimensions
In general, by time-invariant, finite-dimensional linear system Y(A4,B,C,D) on
the state-space, X, we mean that X, U, and Y are finite-dimensional linear vector
spaces and A, B, C, and D are bounded linear maps: A € L(X), B € LU, X),
C e £(X,Y)and D € LU,Y). X =R", U =R", Y = R* are called the state,
input, and output spaces, respectively. Furthermore, the state Z(t) € X, the input
u(t) € U, and the output j(t) € Y, are related by the equations

#(t) = AZ(t) + Bi(t), t>0, Z(0)=Zo (2.4)

7(t) = CZ(t) + Di(t), (2.5)

where #, € X is an arbitrary initial condition. If @ € L*[0,T);U), then T €
C([0,T); X) and 7 € L*([0,T};Y) are given by

t
F(t) = etTy + / A=) Bii(s)ds (2.6)
0

and
t
7(t) = CeMtay + /0 CeMt=9 Bi(s)ds + Di(t) (2.7)




The frequency-domain representation of equation (2.7) is given by
§(s) = Di(s) + C(sI — A)~'Bi(s). (2.8)

The above representation is obtained by letting ¥p = 0 in equation (2.7) and then
taking Laplace transforms. Equation (2.8) can be written as

§(s) = G(s)i(s) (2.9)

where

G(s)=D+C(sI - A)7'B (2.10)
is called the transfer function of the finite-dimensional system S (A, B,C, D) defined
by equation (2.4). The transfer functions are proper rational matrices with com-
plex coefficients. A theory for control design based on a transfer matrix description

has been developed using the algebraic properties of the finite-dimensional transfer

functions. In this work, we will base our analysis entirely on state-space theory.

9.3 The Problem Statement

Consider the linear system:

%*(t) _ AZ() + Bu(t), te€[0,T), (2.11)
with
01 0 .. 0\ [0 ) [ 1.(t) \
0 0 1 ... 0 0 z4(t)
A= + ¢ ., k=] ], Z®)= : . (212)
0 0 0 ... 1 0 Tm-1(t)
a, a; a3 ... Qm | \1) \ Tm(t) )

and the observation function
y(t) = & 1(t), & =(1,0,...,0). (2.13)
Let the interval [0, T] be partitioned into p subintervals

P:0=ty<t; <...<ty. <t =T,




and set h; = t; — t;_;. Our objective is to determine the control element u(t) €
C™-2(0, T that drives the system (2.11) from £(0) to Z(T) such that the observed
function y(t) satisfies the interpolation conditions

y(tz) = o4, 'L:O,lrrp_l)p (214)

Moreover, we require that u(t) minimize the cost function

I = [ " (g)(um)?) dt. (2.15)

(Notice that equation (2.15) is a special case of equation (1.2) where § = 1.) A control
that achieves this objective is called optimal. Here, #,b € R™, u(t) € L2[0,T} and

A is an m x m matrix. We want to find the control law u(t) that drives the system
(2.11) from #(0) = £° to Z(T) = &* and minimizes the functional J(u). Before we go
any further, the following definition and theorem are in order:

Definition 2.1 The linear system (2.11) is said to be controllable if for every pair
of vectors (Z°,ZT) € R™, there erists a finite time T and a control u(t) such that,

T —
Z(T) = e + / e T 9bu(s) ds.
0

Theorem 2.1 The given linear system (2.11) is controllable if and only if the con-
trollability matriz
M=(5 Ab ... A% ) (2.16)

has rank m. We then say that the pair (A,E) is controllable.

Example 2.2 Consider the system Z(t) = AZ(t) + bu(t), Z(0) = Lo. Let

010
A=]10 01
0 00
andg? (001)T. Then
0 01
rank(b, Ab, A%) =rank| 0 1 0 | =3 (2.17)
1 00

Hence, the pair (A,b) is controllable.



The system (2.11) , with A, b as in equation (2.12), is controllable. This is a direct

consequence of Theorem (2.1) since, in this case, the matrix M = (b Ab ... Am-1p
has full rank. Now, our problem is to minimize the functional J(u) subject to the

constraint d
(1) = AZ(t) + bu(t), te[o,T).

We may replace this equation by the equivalent constraint
Z(t) = ey + /OT eAt=95u(s) ds. (2.18)

Then the control problem may be formulated in the space
HYQ) = {u e L}(Q)| Duvel’(Q), QCR, j€Z,0<j< n}. (2.19)

H"(Q) is the Sobolev space of order n on Q2 C R with inner product defined by

T [ B
(w, V) ney = / (Z u(k)v(k)) dt (2.20)
0 k=0
and the corresponding norm
T n n
by = [ 32 19t = 32 1Pl oy (2:21)

Since our problem is formulated in the space H "(R2), it is appropriate that we state
some of the properties of this space that will be most useful in solving our problem.

2.4 Sobolev Spaces and Embedding Theorems
In this section we will give some of the important results about the Sobolev space
H™(Q) that will prove useful in this work. Sobolev spaces are very useful when a
higher degree of smoothness is desired. On the other hand, a major problem with
this space is that many of the operators that occur frequently in applications are not

self-adjoint with respect to the Sobolev inner product.
Definition 2.2 Let | > 0 be an integer; 1 < p < oo, § CR™.

Wr(Q) = {ueLy,(Q)| 3 Due L,(Q), Va3 l|a| <n}
C Ly()




with norm .

lullwa@) = (/Q 3 |Du(t) dt)p'

la|<n

If p=2and Q CR, then
WH(Q) = W(Q) = H*(O),
H™(Q) = {u € Ly(Q)|Du € Ly(Q), j€Z, 055 < n}.

with norm .
lellmey = 2 1D* 150
k=0

and
HX Q) = {u € HNQ)|D’u=0 on 0Q,0< i}

Definition 2.3 Suppose that Xi, || e ||, and X, || ® ||2 are Banach spaces and that 3
a positive constant ¢ < oo such that ||z]l; < cljzll2, Vz € Xy implies Xy C X, then
we say that X, is embedded in X,. Furthermore, the embedding is called compact if

the unit ball
B (0) = {z € Xa|llz]l £ 1}

is compact in the space X;.

Definition 2.4 Compactness Criterion in Hilbert Spaces.
Let H be a Hilbert space and {¢x}2, an orthonormal basis in H. Let B C H be o

bounded subset of H. Define

P,: H — Hy = span{éi}i,

by
Pz = Z(xa ¢k)¢k
k=1

P-:H—- Hy = SPaﬁ{d’k}Z‘;nH

Pz = i (z, de) Pk

k=n+1

R iadiess 1



Furthermore, define
en(B) = sup || Py |-
T€EB

Then B is compact iff
lim ¢,(B) = 0.

n—oo

Theorem 2.2 Let H be a Hilbert space with orthonormal basis {#x}i2,, H1 C H
and H, C H. Suppose that

and

Bn n

An
Furthermore, let ||ul|? = L2, Axl(u, ¢x)|? and JJull] = £ pel(x, éx)|? be norms in
H, and H,, respectively. Then Hy C H, and the embedding is compact. n
Lemma 2.1 Let .

lully = 3 11u®| 2. (2.22)
k=0

Then (2.21) and (2.22) are equivalent.

Theorem 2.3 The Sobolev space H*(SY) is a Hilbert space.

Proof:  The proof of this Lemma is found in Aubin (3]. n
Theorem 2.4 The space H™(Q) is separable and reflexive.[1]

Theorem 2.5 Extension Theorem for Sobolev Spaces.[1, 16]
Let Q C R™ and 0N} piecewise smooth. Assume also that Q C Q. For any fized p, 1,
(1<p<oc,l>0,l€Z),3 abounded linear operator

E: WQ)—W, ()

such that V u € W(Q), (Eu)(z) = u(z), z € Q, and | Eullwya,) < Cllullwin)- u




11
Now, consider the space La(f2), where € = [0,T) C R.
1 2xikt
ty=—=e T, kEL
¢k( ) \/T
is an orthonormal basis in Lq(Q). So u € Ly(€2) implies that
u(t) = Y cedu(t)
keZ
1 2xikt
= T ac (2.23)
keZ
where
e = (u, %)
= / w(t)Br(t) dt
= = / (t)e 5 dt (2.24)
If u € H}(Q2), then
0 ,,
||U||2 n(Q) = Z ||Dk“||ig(n)
k=0
with
el Loy = Z lexl?,
by Parseval’s equality.
(ii) 9 € Ly(); therefore, since u € H{,‘(Q),
du e21r;;k!
\/T Zde
dk = ( ) = QT;ka (225)
and 5 k
i
II2 > | cxl®. (2.26)
kezZ
(i1i) Finally,
2mik
“Dlu“Lg(Q) Z ‘ |2l 2- (2.27)
kEZ




This is true since D'u € Ly(2). Hence,

ZAke 7" ,
\/—keZ

where

2mik

T )Ck,

Ap = (D'u, ¢%) = (
Yu € HF ().

I (z k?') el = z 1D e

keZ
Thus, there exist constants o),y > 0 such that

T+ K" <SR < a1+ K7™
1=0
This establishes that the norm defined b
Ml = D01+ &) el
keZ

is equivalent to the original norm

||UH2 n(Q) = Z “Dku“Lz(Q)

Lemma 2.2 The embedding H} () C HY () is compact.

Proof: By the above discussion, we have

lullgn-r) = Z(1+k2)1—1|cl|2

leZ

= > Alal

ez
and

lullany = D1+ kD) el

leZ

= z ul'CIIQ)

leZ

12

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

where A\x = (1 + £2)" ! and g = (1 + k®)". Thus, by Theorem (2.2) the embedding

is compact since
o _ QFE)
A (14 K20t
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Theorem 2.6 The embedding H™(2) C H*1(Q) is compact.
Proof: 1t is obvious that H"() is embedded in H™ 1(Q) since

Nl gn-riq) < llwllane)-

However, the compactness of the embedding is not so obvious. To prove this, we
apply lemma (2.2). Let Q C &, with Q C ;. By the extension theorem,

E: H*(Q) — H} )

is bounded. By lemma (2.2), the embedding C : HZ(Q,) C Hp~ () is compact.
Now, let

R: H}MY Q) — HF (),

w € HFY(Q) — Ru = ula
Clearly,

| Rull g1y < H”Hng'l(n,)-

Thus, the embedding
HM Q) B Hp(Q1) € HET () B H™H(Q)
is compact and the proof is complete. [

Theorem 2.7 Let @ C R™ be a bounded domain with N e C'. (a) If 2n > m,
then H™*(QY) is embedded in C(Q) and the embedding is bounded; that is, there exists
a constant C such that ||u|lc@) < Cllullun) for all u € H™(Q). Furthermore, the
embedding is compact. (b) If n— 5 >, then H™(Q) € C7(Q) and the embedding is

compact.

Proof: The proof of this Theorem is found in references [1, 16].
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2.5 Existence and Uniqueness of a Solution
The set of elements u € H™(Q) satisfying the constraint (2.18) is a linear variety
V in H*(2), that is,
t -
V = {ue HMQ):Z(t) = / A= (s)ds},
0
vt = {we H'(Q): (v, w)=0 Vue V}, (2.33)

t -
Vo= {ueHYQ): F(t)=eMio+ / A5 (s)ds).
0

Therefore, the control problem is equivalent to finding the element v € V of minimum

norm.

Theorem 2.8 The control problem (2.11), with A, b as in equation (2.12), has a

unique solution.

Proof To establish the existence and uniqueness of a solution, it suffices to show
that the linear variety V, as defined in (2.33), is closed. First, observe that V is
nonempty since the system is controllable (by Theorem 2.1). Let {u,} be a sequence
of elements from V converging to an element u. To show that V is closed, we need
to prove that u € V. Let

t -
F(t) = ey + / A=)y (s)ds. (2.34)
0

We must show that Z(t) = 7(t).

TOREAOE | A5y (s) — un(s)]ds. (2.35)

By Cauchy-Schwarz inequality, we have
t - ¢
150 - 2O F < ([ 16X ds)([ | uls) - unls) I ds)
oo Ak
< /I ) lzds_/lu(s ) — ua(s) |*ds

k -3k -
/0(2 i 'k, )l nbn) dslu—wal? (230
k=0 d

t
< / 2IANE=9) dg |y — 0, ||2
0

A -1
” 2” (e2||A||t _ 1) ”u _ un”2

(A

IA
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Since A € L(R™), there exists a constant / < oo such that |Al| < M. Thus,

1
700 - E() < 2 (1) = (237)
Therefore, integrating from 0 to T', we get
17— Zall < Cllu — ual| (2.38)
where C = (Mz—_i (M.z;1 (ezMT - 1) - T))%. Thus,

17— £l < 17 = Eall + 120 — 2l < Cllu — wall + 1120 = 7). (2.39)
Since u — u, and & — Ty as n — oo, we get § = I. (]




CHAPTER III
OPTIMAL CONTROL

Optimal control is a branch of modern control that provides analytical designs of
a special type. In this case, the system is required to be the best possible system of

a particular kind in addition to satisfying stability requirements and all the desirable
constraints associated with classical control. Linear optimal control is a special type
of optimal control in which the controlled system is assumed linear and the control
element is forced to be linear. This leads to an output that is linearly dependent
on the input. The linear nature of many engineering plants justifies the study and
analysis of linear optimal control systems.

To obtain the optimal control law we first reduce the control problem to a boundary-
value problem. The resulting boundary-value problem is then solved using standard
techniques. The embedding theorems of section (2.4) assures us that the solution of

this boundary value problem is bounded.

3.1 The Optimal Control Law
In this section, we will determine the optimal control law for our system
d _. - —
Et-rr(t) = AZ(t) + bu(t), t€Q,
with cost function

J(u) = /ﬂki [ut®))* dt.

The optimal control u(t) is the element u € V of minimum norm, where V is given by
equation (2.33). What follows is a construction of V+. For u,v € H"([0, T}), consider
the inner product (u, v)gn(a)- If we integrate this by parts, we obtain

T N n_ T
(4, V)pn(y = 3wkl ds = Z/ u®y®) ds (3.1)
k=0 0

0 r=o

T n T k . . .
= / uvds + Z \:(-—1)’° / 228y ds + 2(_1)k—3v(2k—1)u(1—1)‘g’}
0 k=1 0

j=1

n n k
=[Sy (z(_1)k—ju<2k—i>uu—l>) g
0 k=0 k

=1 \y=1

16
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0 k=0
fv(n+1)u(n—2) + L. + (_1)(n_1)v(2n_1)ll] ‘;I"

Now, we want to minimize
J(u) = (v, u)unn)

subject to

g(u) = e"*Tz(T) — z(0) - /OT e 4bu(s)ds = 0.

To this end, we let
L(u, X) = J(u) + XTg(u)
where X is the optimizing vector. Therefore, the optimal control law is obtained by

solving the following equations':

dL(u,X) _
ou =0
dL(u, \) _ .
o, =1, j=12,...,m

Using equation (3.1) in the above equations, we obtain the following boundary-value

problem:

Zn:(_l)ku(%) _ T-At

k=0

INotice that

- T n - -,
L(u,X) = /0 (Z(—nkum) —,\Te‘A’b) u(s)ds+

k=0

n

k
Z (Z(—l)k‘ju(Zk"j)u(j“l)> 1T +3T (e=ATx(T) - 2(0))
J=1

k=1

and, hence,
L{u, X T(& .
é] ((97;: ) =/0 (Z(_l)ku(ﬂe) —/\G_A"b) ds
k=0

OL(u, X)
dX;

= g;(u), ji=12,...,m
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Z(_l)k—lu(‘_’k—u ‘O,T - 0
k=1
n—1
S (-1 for = 0
k=1
(3.2)

2
Z(_l)k—lu(2k+n—3) |0,T - 0

k=1
’U(n) lO,T = 0.

We will show that the BVP (3.2) has a unique solution. This is not surprising
since we are dealing with a system that is controllable. Furthermore, it will be shown
that the solution of equation (3.2) is a function of X and ¢ namely u(}, t). Then, the

desired optimal control law will be given by
ut(t) = u(A t), (3.3)

where »* is the vector X that satisfies

t N
/ e~ Abu(X, 5) ds = e ATE(T) — e~ Z(to)- (3.4)
0
Now, if we let
v = P
u) = ¢'1=¢2

u(?n—l) = w,Qn—l = 111211
u(2n) — ¢’§n — (_1)2nu2(n—1) +...+ (_1)n+3u(4) + (3.5)
(_1)n+2u(2) + (_1)n+lu+ (_l)n;\'Te—Ati;,

then the differential equation reduces to the following system of first-order linear

differential equations:

V() = FU(t)+3(t) (3.6)
BY(t) |p = Bo¥(t)=0 (3.7)
B\I’(t) lT = ]?T‘I/(t)=0, (38)




‘Il(t) = (wl(t)a 1/)2(t)1 Tty 1»b2n(t))Ta
F(t) = (-1)"6" e~ Xem

and &, is the 2n — vector with 1 at the 2n — th position and zero elsewhere.

[/ 0 1 0 .. 0 0)
o 0 1 .. 0 0
F= , (3.9)
o 0 0 0 1

and
(010 -1 0 oo oo (=172 07 (=171
001 0 -1 ... ... ... 0 ( nHr? 0

B=|: +: ror : : ; . (3.10)
\0 00 0 0 .. 1 .. 0 0 0

By elementary row operation, the matrix, B, may be expressed in the equivalent form

B = {bi,j}iz1,...,n;j=1,...,2n

where
1 ifj=i+1,7=1,...,n
bij = (—1)”"' ifj=2n-(-1),i=1,...,n—1 (3.11)
0 otherwise.

Now, let ®(t) be a fundamental matrix solution of the homogeneous BVP

U'(t) = FU(t) (3.12)
Bo¥(t) = BU(0) =0 (3.13)
Bri(t) = BY(T) =0 (3.14)
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with ®(0) = I. The general solution of equation (3.6), when it exists, then satisfies
U(t) = B(t)¢+ ¥°(t) (3.15)

where
0o(t) = B(t) /0 & (s)o(s) ds (3.16)

is a solution of equation (3.12) with ¥°(0) = 01 and ¢'is an arbitrary element of R?",
Therefore, the boundary conditions (3.13), (3.14) become

Bo(®(t)c+ ¥°(t)) = Bc=10 (3.17)
Br(®(t)¢ + ¥°(t)) = (Br®(t))c+ Br¥°(t) =0. (3.18)
This gives the following system of equations
N R (3.19)
Br®(t) r,
where ', = —Br¥°(t). For a convenient notation we let
= B
Br®(t)
and
r=|® } |
Iy
Thus,
Hc=T. (3.20)

Let us discuss the following important lemmas before going any further.
Lemma 3.1 The matriz F has 2n linearly independent eigenvectors.

Proof: From
’ det(BI — F) =0 (3.21)

we obtain the characteristic polynomial of F' as

B )62"+2 +(__1)n _

n n—2 n
g - g4+ (1) = P (3.22)




Solving equation (3.22), we see that the eigenvalues of the matrix F' are

B = a0 k=1,...,nn+2,..., 20+ 1 (3.23)
Thus, F has 2n distinct eigenvalues. Now, solving
(,BkI - F)pk =0 (324)

gives the eigenvectors of F' as

[ 1)
Br

2
k

pe=| o |pe k=12..mnE2. 24l j=1 20 (3.25)
k
2n—2
k

\ o )

where py, is the first component of the eigenvector px. Since the eigenvalues are all

distinct and the eigenvectors are as in equation (3.25), we then have that the matrix

F has 2n linearly independent eigenvectors.
Lemma 3.2 (Gantmacher [17]) For a nonsingular operator A, At = 0 impliesx = 0.

Lemma 3.3 When the system (2.11) is controllable, then the matriz H has full rank
for allT > 0.

Proof : Recall that
H= B .
[ B®(T) }

To prove this lemma, it suffices to show that null(H) = 0, by lemma (3.2). Without
loss of generality, we take T = 1. Therefore, let ¥ € null(H). Then

BE=0 (3.26)

and
Befi =0 (3.27)

. NI S S
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where F and B are given by equations (3.9) and (3.10), respectively. By using equa-
tion (3.11), we see that BZ = 0 implies that

(

\

x5 + (1) Vagn i

Zy + (—1)"z9n \
T3 + (—1)"—21'2“_1

I

Tni1 /

-OI

(3.28)

If we denote the columns of e by P;, j = 1,2,...,2n, then equation (3.27) may be

written as
(BP, BP, ...BPy,)T=0
where
[ p2j + (=1)" " 'pan;
pa; + (—=1)"*pan—1
BP; = 3
! pij + ("‘1)”'('_1)1’271—(.‘-1),]'
K Pn+1
Thus,
0 = (B.P1 BP2 B.Pgn).'f
2n
= Y z;BP;
j=1

From equation (3.28)

Ton-(j-

2n
>z (pi,j + (—1)"_('_1)P2n—(i—1),j) ; 1=1,2,...
i=1

p = (=) g

1,...

Thus, equation (3.30) becomes

2n )
0 = > (Pi,j + (_1)n—(1*1)p2n—(i——1),j)
i=1

\

(3.29)

/
. (3.30)
, . (3.31)




P——-———-———’--———-—
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n 2n

= 2.5 (Pi,j+(—1)"_(i'l)P2n—(i—1),j)+ PE? (pm—+(—1)"‘("")192“_@_1),]-)
1=1

j=n+1

S (o ()G
= j \Pi, n—{i—1),
P (pJ+( 1) Pan—( 1)1)+

n
Z(‘l)_("—”l)%ﬂ (pi,2n—j+1 + (_1)n_(l_1)p2n—(i-—1),2n—j+1)

= (pi,l + (—1)"_(i_1)P2n—(i—1),1) T+
n
Y, (Pi.j + (‘1)"_(1—1)P2n—(i—1).j + (_1)—(n_1+l)pi,2n—-j+2 + p2n—(i—-1),2n—j+2) Z;
i=2
= m; 1T + Mi;Tj, i=1,...,nj=2,...,n (3.32)

This yields the set of equations
My=0

where 7 = (Z1, T2, - - .,xn)T and M = {mi; ;=
mi) = Pip + (=1)"  Vpgn_iopyy 1=1,...,7
m;j = Pijt (—l)n—(i—l)p’zn—(i—l),j + (‘1)-(n_j+l)Pi,2n-j+2 + Pon—(i-1),2n~j+2
i=1,...,nj=2,...,n.

Since P}, P; = (prjy--- ,pgn,j)T, are linearly independent, it follows that the columns

of the n x n matrix M are also linearly independent. Hence,

My=0
implies
=0,
that is, £, = Tp = ... = In = (. But from equation (3.32)
Ton—(j-1) = (-1)"H ¥ j=1,...,n
Thus, xn+’1 = ... =129, = 0 and £ = 0. Therefore, null(H) = 0. n

Theorem 3.1 Consider the linear nonhomogeneous system of differential equations

7 = A()E +b(t) (3.33)




;
;
¥
4
!
}
'
i
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where A(t) € Li(M) and b(t) € L. Let T . C — R" be continuous and linear.
Further, let the solutions of (3.33) satisfy

TEt) =1, (3.34)

for any given T € R". Then the BVP (8.53), (3.84) has a unique solution for every
r € R* and every g(t) € L, if and only if t!.e corresponding homogeneous linear BVP

T = AQ)T (3.35)
TZ(t) =0 (3.36)
has only the trivial solution Z(t) = 0.

Proof : The proof of this Theorem can be found in Dernfeld/Lakshmikantham (8].

m
We now state the following:

Theorem 3.2 The BVP (3.12), (3.18), (8.14) has a unique solution.

Proof :  The proof follows from Lemma (3.3) and Theorem (3.1). |




3.2 Determination of the Optimizing Vector x*

Let us now determine the vector A* that yields the optimal control u(t). First,
we observe that when the conditions of theorem (3.1) hold and F given by equation
(3.9), the unique solution of (3.12), (3.13), (3.14) is expressible in the form

U(t) = Bt —to)H'T + ¥°(t)
t
— eFU-t)g-1p 4 [ eFt-9)5(s) ds. (3.37)

to

Thus, from equation (3.3), the optimal control is represented by
u(t, A) = T W(t, 3*) (3.38)

where the 2n-vector, €}, is the coordinate vector given by €; = (1,0,...,0, 0)T. The
vector /\.:‘, (hereafter, denoted simply X), that yields the optimal control is obtained
by applying equation (3.4):
t - -
e~ F(t;) — e~ M0F(tg) = / " e~ Ashu(s, X) ds. (3.39)
to

For ease of notation, let

Alto, ty) = e" A1 3(ts) — e 4Z(to). (3.40)
Thus
t -
Ato, ty) = /! e~ A*beT W (s) ds
to
t - s
- / " e speT [eF("“’)H“lI’ + [ eFeIa(r)dr| ds
to to
= /tl e'Asgé‘{eF(’”'O)H_IF +
to
t . s
[ ek ( [ erena() dT) ds (3.41)
to to
Now,

t = s
/ g (é‘{/ eF(’—r)&'(r)dr) ds
to to

ty - s -, -
_ / =49 (é‘{ / eF("’)(~1)"é‘2nATe“A"bdr) ds
tg t

0

L s N N
e ]




26

e——Fr—» ( 1)n/\T A(to+r)bd7,> dS

o\‘-‘

— /h ~AG'+o)F | (41* Fs'
0

- e—Ato(_l)ﬂ /h —Asg(é‘{er'/ e—Fr = /\T —A(to+r' )bd ) dsl
0 0

h

— —_AS'T 4 - .. - _AT 1, ¥

e Atg( 1)n/ Asb(éqler/ e Fr l ATy dT) ds' e A toy
0 0

= e AG(h)e 0N (3.42)

where , ,
G(h) = (—1)"/0 e‘A"E(é‘ITeF"/ e Fr' gyble A dr') ds' (3.43)
0
h=tf—t,r=1t+ r', and s = tp + §'. Similarly,

¢ fod h "o '
[T e (e T WHT) ds = [ At (&P HIT) ds
to (}
— /h e—A(to+s')g(é‘{er') ds' H-'T
0

h' [ d '
e—Ato (/ e—As b (é‘{"er) dsl) H—lrn
0
= e AMK(hH™'T
= e A K(h)W,T, (3.44)

where

K(h) = /(;h e~ 4'b (é‘{e“') ds' (3.45)

and W, is the 2n x n submatrix of H™! given by [IW) : Wy = H™'. Now, I' = (0,)7
and the n-vector I'; is, (from 3.19), given by

t
r, = —Be”f/f e FeG(s)ds
to

h 1]
= —BefY / e~ Flto+5 (o + ') ds’
0

h I -, N
= —Be”‘/ e Fs (—1)"€2nATe‘A('°+s)bds
0
_ _1\n+1 Fh h —Fs-' T —ATs ! —ATt v
= (-1)"""Be A ds'] e A
0

h ’ ’ bed
= (—1)"+1B/ eF(h“’)é}nI-)Te"ATs dse ATt}
0
= BQ(h)e A oX (3.46)
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where R
Qh) = (~1)™+! / eFh=5g, FTe=ATs! g (3.47)
0
is a 2n x m constant matrix. Substituting (3.46) in (3.44), we obtain
t - -
/t "e A5 (TP HIT) ds = e~ K (h)p(h)e=A"t0 (3.48)
0
where
n(h) = WoBQ(h). (3.49)

Thus, equation (3.41) simplifies to
e~ G (h)e~ 40X + e~ A K (R)n(h)e A 0N = e AU E(t)) — e (ty).  (3.50)

That is
e~ 40[G(h) + K(R)n(h))e 40X = [~ F(ts) — e~ A0F(to)). (3.51)

From equation (3.51), we obtain

e~ A Ce A0 X(tg, t;) = e A F(t;) — e~ E(to) (3.52)

where
C = (G(h) + K(h)n(h)). (3.53)
Equation (3.52) is a system of linear equations in A\;, 2 = 1, 2, ..., m. Hence, the

optimal control law is obtained by substituting the solution \ of (3.52) into (3.38).

Theorem 3.3 The system (3.52) of linear equations has a unique solution. Further-
more, the solution of (9.52) is given by X = (e‘A‘°Ce‘AT‘°)"1K(t0,tf).

Proof : This follows from the existence of the optimal control law.
The preceding analysis leads to the following:

Theorem 3.4 When the system (2.11) is controllable, the control that drives the
system from Z(to) to Z(t;) and minimizes the cost function J{(n) = f,tof YR o(u¥)tds
s given by

u(t, ) = T (eF(‘_m)H_lF + teF("’)(‘f'(s) (ls) (3.54)

to
where t € [to, 7], 3(s) = (—=1)"es A Te~ 4%, and F, H, T are as given in (3.9) and
(3.10).
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!
Theorem 3.5 The following are equivalent: |
i
1. There ezists a control u(t, X) such that ’!
|
T
z(T) = e*Tz(0) +/ eAT=bu(s, \) ds i
0 b
is satisfied for all z(T), z(0) and oll T > 0.
2. The BVP ) )
4p(t) = Fop + €m0
By(0) =0
By(T) =0
has a unique solution. Here, v = (u,u®, ..., u®)T, o = (_1)1;5’1‘6—/17‘:/'\’, and

F and B are as in equations (3.9) and (3.10).

3. The matriz?
C = G(h) + K(h)n(h)

is nonsingular.

LRI e

2From equations (3.43), (3.45), and (3.49),

ty . 3 ty
e‘A’bé‘feF’ (/ (:’F’e"'_,,l-)Te_ATr dr — WgB/ eF("’p)e{nl-)'re_ATp dp) ds
to

to

wmmmw=hw/

to




CHAPTER IV
APPLICATION OF CONTROL THEORY TO SPLINE APPROXIMATION

In this section, we describe a procedure for constructing spline functions from

control principles.

4.1 Splines and Control Theory
Theorem (3.2) implies that the optimal control law for the system (2.11) is unique
and this control element is given by equation (3.54). Since a control law for the
system exists, there exists a set of points Z1,...,2P"! with i =aq,1=01...,p
such that the solution of the system (2.11) satisfies Z(t;) = #1=0,1,...,p—L,p.
By theorem (3.4), the control element that drives the system (2.11) from £~ to &,

i=1,...,p, and satisfies equation (2.13) is given by
u(t)|hi—de = ui(t)t (4‘1)

where u;(t) is the restriction of u(t) on [ti—1,t:]. Now, we need to determine the
unknowns &, 1 = 0,1,...,p. However, since x’l =a,1=01...,p, we only have
(m — 1)(p + 1) unknowns to determine. This is realized from the (m — 1)(p — 1)

continuity conditions on the control u(t), namely,
ugr)(t,»)zug’;)l(t,-), r=0,...,m—2, i=1,...,p—1 (4.2)
and 2(m — 1) conditions at t = 0 and at t = T. Now, from equation (3.54),

t
u(t) = &7 (eF(""’)H"lF + e“/ e FG(s) ds) (4.3)

to

t -1 .
uM(t) =& (eF(‘““’)F’H‘lI‘ +eftFT / e FG(s)ds + Y F15<"-‘-J>(t)> (4.4)

to j=0

Thus,

¢ r-1 ,
ugr)(t) _ é‘f (eF(t—t.‘—l)FTHi'lr‘i +eftFr / e F3;(s)ds + Z F’&‘Y‘l")(t))
ti—1 =0
(4.5)

29
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r=0,...,m—2, tE[t,‘_l,t,‘].
Similarly,

-

5:-)1( ) ( F(t t)FTH +1F1+l +€FtFT/ F36i+1 dS + Z FJ -‘(7' l-])( )

i ; v
(4.6)
r=0,...,m—2, tE[ti,tH.l]
where, from equation (3.6)
Gi(t) = (=1)"EmA e 4 (4.7)
and from equations (3.17) and (3.18)
Bd(t;-
Hi — ( l) (4.8)
Bd(t;)

and ®(t) = eF¢=t-1), Thus,

t; r—1 ,
)= (et [ a0 6
3=0

ti—1

i=0
Substituting equations (4.9) and (4.10) in (4.2), we have

r—1 )
£r+)1(t )=¢€; (FrHi:Ll1P(ti+1) + Fr&z(:_ll—n(ti)> (4.10)

t r—1 .
ti-1

3=0

r—1
] e (F’H,-;ar(t,-ﬂ) + Y Pl )) (4.11)

j=0

r=0,....m—-2, i=1,...,p—-1
The first term on the right side of equation (4.9) is:

eTeFMFTHIIT(L) = & eM™MFTH'T(t:)

= élefMFrH ! 0 (4.12)
Ty (t:)
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If we set
-1 _ (H'H) (4.13)
where H!, H! are 2n x n submatrices of H[!, we obtain
TFMFTHIT(t) = &P (HH) o
BQ(ti_l, tl)A(t,)
= &M T H! BO(h)e Y 5 M (tio, 1) (4.14)

The second term in equation (4.9) is:

t; t;
e-‘{'FreFt‘-/ —F's—'(s)ds — é‘{'FreFt"/ —Fs-*(s)ds
t ti-1

i—1

t; -
= é‘{FTCFt‘/ ——Fs—* ( 1)nb ATS)\(ti_l,t,')dS
ti—a

t; -
= (—1)"é‘fF’e”" (/t e'F’e“gngre‘AT’ ds) Mtio1,ti)

i-1
h r [ bnd

= (—l)né‘fFTCFh (/ C—Fs ggngTC_ATs dS') C—ATti_I/\(ti_l,ti)
0

= —&TFQh)e " X (o1, t) (4.15)

Finally, the third term in equation (4.9) is:

r—1 . r—1 .
AT P = L FETT)
7=0

§=0

= (—1)“*’"1?{2( 1) F7éz,b BT(AT ) TA()  (4-16)

On substituting equations (4.12), (4.15), and (4.16) into equation (4.11) we obtain

T [eF ™ F H{ BiQ(h Y ATt~

FrQ(h)e 4 + (1) ‘Z( 1) FigpbT (AT )T )X =

j=0

é‘{[FTH:{HB,'+1Q(h,'+1)€_A b +

)n+r 12( 1]FJ€2 (AT 1- J)T])\H‘l (417)




32

From equation (3.52),
)‘ __eA ti 10~ ( )[ —Ah. z—,fi—l]
Thus, equation (4.17) simplifies to

—&T M;(hy)e? 5 C (b)) 1+
& [ Mi(h)eX 5 C 7 (he)e ™™ + Mg (hivr)e HC7 (hign )& —
& Mig1 (his)e? 5 C ™ (hiyy)e ™ n F4 = 0 (4.18)

where
hi=t;—ti

r—1
M; = ePMFTH! BQ(hy)e™ i = FrQ(ha)e ™ 4 (= 1)1 Y (<1 FIggabT (A7 9)T
j=0
(4.19)

and
Mipy = FTH! By Q(hig)e™ T4 4+ (=1)" 47~ ‘Z 1) Figg, b7 (A )T (4.20)

i=1,...,p—1, r=0,1,...m-2.

Therefore, we can obtain the unknowns Z',...,7P~! by solving the linear system

(4.18). This enables us to define the control u(t) piecewise on the interval [0, T].
Further, the solution of the system (2.11) is given by

[4
#(t) = eM2° +/ eAt=bu(s) ds (4.21)
0

Now, from the structure of the state matrix A, we observe that z(t) = zi1(t),¢ =
1,...,m — 1. Thus, the continuity of z(¢) implies the continuity of x,;,(t) for ¢ =
1,...,m — 1. Also, the continuity of u(”(¢) implies the continuity of x(lm+r)(t), r =
0,...,m — 2. This leads to the conclusion that the observation function y(t) = z,(t)
is an element of C*™~2(0, T] and satisfies the boundary conditions

y(0) =22, y(T)=zT,,, r=0,...,m—1 (4.22)

and
y(t:) =i (t:), i=1,...,p—L (4.23)

Thus, y(¢) is a spline function and the above discussion proves the following:
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Theorem 4.1 Let Z(t) be the solution of the system (2.11), (2.12), and (2.15) with
z.(t) = oy, i = 0,...,p. Then there ezists a unique function y(t) € C*™-2(0, T

that satisfies equations (4.22) and (4.23).

4.2 Classification of Splines

The type of spline is determined by a set of basis functions. By control principles,
we can construct these basis functions. Now, suppose the interval [0, T] is subdivided
into p subintervals. In this analysis, it suffices to consider just one subinterval to de-
termine the kind of interpolation functions of the state Z(t). Thus, on the subinterval

[tO)tl] ) A
#(t) = X005 (k) + [ eAtDbu(s, N)ds

to

The control law is given by Theorem (3.4):

-

u(t, X) = & (MWHT + [ F05(s, %) ds)

to

From equations (3.44) and (3.46)
tto _awp( [* o F(s'—) 2 FT,-ATT
G(t) = (—1)"/ e b / eTeF' =g, pTe~4"" dr' | ds'
0 0

t—to - ,
I(tzf —As’b T oFs' ds'
) e (el e ) s
and
C(t) = K(t)n(h) + G(t)
If we substitute equation (4.25) into (4.24), we obtain

F(t) = eA(t—to)f(t0)+ teA(t—s)g(é*{ (eF(t—to)H-IF+
to

to

= eAltto) [20 4 K(t)Wzn(h)e“"T"’X +G(t)e )]
= M0 [0 4 (K(t)n(h) + G(t))e ™" et 0C et (e ' —
= eAlt-to) [m l(h) Ato( —Atp sl e—AtOj{))]

+CWOT (W) - 2]

eAlt=to) |70

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

| e (r) dr)) ds

—AtOi:O)]

(4.29)

A —
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Now, since the matrix F' has linearly independent eigenvectors (py, pa, ..., D), then
F'is similar to a diagonal matrix D = diag(f,,..., () [19]; that is, there exists a
nonsingular matrix P such that

F = PDpP~! (4.30)
Let
Py P12 .- Piom P’m P'1,2n
o I O
Ponyg P2n2 --- DPono2n P’2n,1 pl2n,2n
Here, the columns of P are the eigenvectors px, k = 1,2,...,2n, of the matrix F.

Let E be the Jordan canonical form of the matrix A. Then A = QEQ~!, where Q is
the matrix such that AQ = QFE. Thus, further analysis is simplified by replacing the
matrix F' with PDP~! and the state matrix A with its Jordan matrix E. Hence, we
may write

Z(t) = Qe"Q 2 + C()CM (h)(Qe~ErQ T — £9)] . (4.31)
Let the first row of the matrix QeZ(t~*)Q=1(I-C(t)C~'(h)) be ($1(t), ..., dm(t)), and
the first row of the matrix QeE(t-2)Q-1C(t)C1(1)Qe"PrQ~! be (Y1 (t), ..., Ym(t)).
Now, the system (2.11) is controllable since rank(bAb ... A™~1b) = m. The output
of the system is

y(t) = éZ(t)

t -
= & (e 4 [ eA=9pu(s) ds)
to

= QePUIQT [ + C()CT (h)(QeTrQIE! — )]
= (61(t), ..., 3m(t))° + (1 (2), ..., ¥m(t))F

= Y Rd(t) + Y mw(t). (4.32)
P 21 _ [ oAt () — _
By choosing 7 = é; and Z* = 0, we obtain ¢; ' = y"(¢), r=0,...,m— 1.

Thus, forr =0,...,m —1,

¢ (0) = y(0) = 27(0) = 7,41(0) = 22, = bx iy
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¢ (h) =y () = 2V (h) = Trpi () = 2741 =0,
k=1,...,m.

In a similar manner, if we choose 2° = 0 and ! = €;, then we obtain
) j

P =y0(t), r=1,...,m

Hence,
P0) =y =0

P(h) = yO(R) = bjr
j=1,...,m.

The above discussion proves the following theorem.

Theorem 4.2 Let A be given by equation (2.12). Furthermore, let the first row
of the matriz QeE¢~0)IQ~1(I — C(t)C(h)) be (¢1(1), - -- ,dm(t)), and the first row
of the matriz QeEt-t)Q-1C(t)C~(h)Qe ErQ " be (W1(t), ..., Ym(t)). Then, for
r=0,...,m,

M(0) = beper,  OL(B)=0, k=1,...,m

Oy =0, Yh) =841, L=1...,m. n

Therefore, ¢x, ¥, kK = 1,...,m are basis functions for y(¢t). These basis functions
depend on the entries of the matrices ePt K(t), and G(t). Hence, we can determine
the type of spline function by carefully examining the entries of these matrices.

Proposition 4.1 Let the state mairiz A be nilpotent of order m and the cost function
J(u) = [T Tr_o(u®(s))2ds. Then y(t) is a polynomial spline if and only if n = 0.

Proof To prove this proposition, we observe that the spline function y(t) is expressed
in terms of the basis functions ¢ and ¥y, k = 1,...,m, equation (4.31). However,

Et and

the basis functions themselves are dependent on the entries of the matrices e
ePt where E and D are the Jordan forms of A and F, respectively. Now, if A is
nilpotent, as in the proposition, then A is already a Jordan matrix and hence the

entries of eEt are all powers of ¢. It then follows that the spline function y(t), which
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i a linear combination of the entries of e€* and eP* is a polynomial if and only if the

entries of ePt are all powers of t. This is the case only if n =0. ]

From theorem (4.2), we see that the basis functions ¢;, and ¥; are determined by
the matrices eft, and eF!Q~'C(t). But these matrices are themselves characterized
by the spectrum of the state matrix A, and the matrix F. Therefore, we will classify
the spline functions obtained by control principles by examining the entries of A, and
F. In this classification, we consider the case where the state matrix has dimension
9 and the cost function J(u) = fi ((u(s))? + (w/(s))?) ds. For higher dimensions and
derivatives of higher orders, the procedure is similar but more involved. So let

1
Az(o ), a1,02€R1
(831 2012

b= (01T

Then the eigenvalues of A are

fi=og + o+ o
& =09 — 3 +ar.

Thus the Jordan form of A and the transformation matrix Q are as follows:

)

0 &

(11 L1 & -1
Q—(El 52)’ @ 52—51(—51 1).

Since J(u) = f§ ((u(s))? + (w/(s))?) ds, then, from equation (3.22),

F= 01
10
with eigenvalues and eigenvectors

:Bl'—_l) ﬂ?:—lv Plz(i)a p?z(jl)
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Thus

Also, from equation (3.10),
B=(01)

and on the subinterval {t;—, ti],

¢(t) _ eF(t"ti—l) _ COSh(t - ti_l) Slnh(t e ti_l) .
sinh(t - ti—l) COSh(t it t,'_l)
Thus,
1
Bé(t) = 3 (sinh(t — t;—1) cosh(t — ti_1))

and from equation (3.20), we have

o B(ti—1)
o () .
0 1
- (sinhh,— coshhi) (4:34)

-l = -1 coshh; -1
*  sinhh; \ —sinhh; 0

where h; = t; — t;_;. From equation (3.43),

t—ti I s’ ' '
G(t - t,‘._1) = —/ C-As b (/ é‘{e”’ - )gggTC_ATr dT’> ds'
0 0

-0 ( au(t) §2(t) ) QT

gan(t)  §2(t)
where

~

-1 {_Q(t - ti—l) e(=6)t-ti-1) _ e~ (LH&)(t-ti-1) _ 1
1-¢ (1—£1)? (146)? }

m) =575
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510 (t ~1 9(er—t)t-ti-) _ 1) QU-E)=ti-) _ ] e+t
912( ) - 2({2 _ El) { (1 — é%)(§2 _ 61) - (1 _ {1)(1 _ 62) + (1 + 51)(1 + {‘2) }
5oy (¢ -1 —9(e~(@-6)(t-ti-) _ 1) ((ImE)l-ti-) ] em(HEt)
)= 5 — e { -E-&  (-&0-&  (+60+&) }
Goo (1) = -1 —2(t — t;1) e(I-€)(t=tica) 1 = (1+6)(t-tim1) _ 1
gna(t) = 2Es — &) { 1-¢&2 1-&)?2 (1+&)? }

From equation (3.45),

t—ti—y e '
K(t—-ti) = fo e 4G (e ds'

_ 0 En(t) ki) ‘t
ka1 (t) kaa(2) i
h
where I:: (t) _ C(I“El)(t—ti—l) _ 1 —(1+El)(‘ ti1) _ 1
! 1-¢& 1+6
(1-&1)(t-ti-1) _ e~ (LH&)(t-ti-1) _ |
e 1 1 :
kio(t) = { 1—¢, + 156 }
b () {e(l—sx)(t—u-l) ~-1 e—(1+E)(t=tim1) _ 1}
“ 2(52 1-6& 1+& .
k ( {e(l—fl)(t_ti—l) -1 N —(1+£1)(t tie1) _ 1} 1
# 2(52 1-¢& 1+ & |

Equation (3.47) gives t
h; ’ ‘ 1
k) = [ PG A ds
0
_ (0:-’11 03112 ) QT
Wy Wy
“ 61 sinh h,‘ + cosh h,- — e_flh.‘
oy = -
! CEREE)
€y sinh h; + cosh h; — e=¢2M
(& — &)1 - €3)

sinh h; — €, cosh h; + £re 1hy
(&— &) - &)

where

Wiz =

Wa = —

T NN R R 5 o —— i
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sinh h; — & cosh h; + &26742h;
(&-6)(1-8)

Wy =
and equation (3.49) gives
n(h) = HBQ(h)
= ( e ) Q" (4.35) |
o1 Th2
where
sinh h; — £ cosh h; + 516"5""’
(&2 — &)(1 — €}) sinh A |
o = sinh h; — £; cosh h; + e 1
. (€2 — &)(1 — &) sinh h; ,
21 =0

i = —

o2 = 0.

Therefore,

e ku(t)ﬁll(hi) ifu(t)flu(hi)
K(t)n(h) = Q ( feor ()71 (he) koo ()2 (hi) ) &

and
Cc@t) = G(t)+ K(@t)n(h:)
( gu(t) + ki ()7 (R Gi2(t) + kyy () (hi) ) QT

Ga1(2) + En ()7 (Be)  Ga2(t) + kan (8)7na(hi)

( Eit) Ealt) ) (4.36) ;

(1) ()

where
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v Getknie (G2 + ke Q-|c]!
—(gn + kafn  9u + kuin

(4.37)

where

IC] = (gu1(ha) + k11 (Ri)Aua (hi)) (a2 (hi) + kaa (hi) iz (hi)) -
(G12(hs) + kuy (R P2 (i) (G21 (ha) + Fax (Ri)hua (hs)).

From equation (4.32),

eA(t—to)[I _ C(t)C’"‘(h,)] — ( ¢1(t) ¢‘2(t) ) (438)

¥ *

where
_ 1
& —&

1
s [211(ha)én (£) + a1 (he)éra(t)) a8 41101 +
1
£2—&
1

$1(1)

{526510—‘{—1) _ gleiz(t—i-’—l)} _

[€11(hi)éa (2) + 521(hi)én(lf)]fz“3£2(t_t""’)IC|_1 -

[C1a(hi)én(t) + Gaa(hi)éra(t))&ret ¢H-D|C| 7T —

£2—&

1
£ —&

[E12(R:)éa1(2) + Eaa(hi)éaa ()}~ H-1|C| 7 (4.39)

and

1
#{) = £—&

3 i__ 1
= £ —& [E11(ha)én1 (8) + a1 (ha)éra(2)] e =501 C| 71 +
- )
£2-&
1
£ — &
1

(__efl(t-ti—l) + eEz(t—t.‘—l)) +

[E11(R)éa1 () + E21(he)éna(t)]e2-5-D|C| 7! —

[Elg(hi)éll(t) -+ 622(}1,')612(15)]651(tﬂt‘_l)|Cl—1 -

[E12(h)éan(t) + Bag(hi)éan(t)]e2—H-V|C|7". (4.40)

& — &

P T T e T

i e e ol dtin it s ke A -
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2.

LK s 3 afoon
Ay e, e pe b e

41

Also
eAt=IC()C (hi)e™ M = (“"f” ””:ft) ) (4.41)
where
() = g lu(han (0 + oAl IO
& i 3 (01 (ha)éan () + B (hi)ema ()| pel - 0M|C| 7 —
e fen(h)en(t) + b Dl HICT -
: 1 1[ém(m)én(t) + Cpa(hi)ena ()] €182 M| C| 7L (4.42)
and
a0) = = e ()en() + en () (O] ICI
- i& (11 (he)éns () + En (i) ez (t)]eCeC -1 8MIC) 71 +
2 i 3 (Era(ha)én (8) + Baa(ha)Era ()]0 |C 7+
- 1 len(h)in(t) + Ean(he)ims ()] B2 81| C] (4.43)

Now, let us consider the various cases that arise from the various forms of the
eigenvalues of the state matrix A.
Case 1: a2 + o > 0. In this case the matrix A has two distinct eigenvalues.
Case 1(i): If & # &, then the spline obtained is an exponential spline with basis
functions ¢1(t), $a(t), ¥1(t) and 1(t) given by equations (4.39), (4.40), (4.42), and
(4.43). Here, $:1(t), ¢2(t), ¥1(t) and o(t) are linear combinations of et, et efrt tebrt)
ef2t and te®*'.
Case 1(ii): If @y =0, and a; > 0, then £, = —&; and we again obtain an exponential
spline. The basis functions are linear combinations of et, e7t, efit, e8¢, teit, and
te 62,
Case 1(ii1) If ay = 0, and o £ (), then & = 0, and & = —2a if g > 0; & = 20,
and & = 0 if ap < 0. The resulting spline function is a linear combination of the
functions 1, t, e, e7t, e, and te™¢* if oy > 0; or 1, ¢, et, et et and te ' if

02<0.

< ~$‘l‘€ A L0
Ay

Ty

Temay
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Case 2: o2 + a; < 0. This case leads to two complex eigenvalues:

£1=a2+iw, £2=a2—iw

N where w = \/— (02 + a1).
; Case 2(i): ay # 0, a1 < 0. The resulting spline has basis fucntions which are linear
combinations of e, e~t, e®?!cost, e*?!sint, te®?!cost, and te®*'sint.

Case 2(ii): as =0, ay < 0. This gives
fl =1 - = w

fz = —’i - = —iw

b ] and a spline function whose basis functions are linear combinations of 1, t, ef, e,

cost and sint.

Case 3: o2 + a; = 0. This implies & = & = as.

Case 3(i): as # 0. Then )
0 (07 ‘

eft = o2t Lt E
L 01 ,

t—ti—y ' s' ' T
G(t e t,'_l) = —'/ e"A’ b (é"{CFs’/ C_FT €2ET€~A T dT’) dS' 1
0 0

- —Q ( gu(t) fhzgt) ) (4.44)

where

gu(t) = Ay(t)em22(t7tm0)  gpemealt=ti-1) 4 Ay
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Gia(t) = By(t)e2t-b-0) ¢ By(t)e™¥("4-1) 4 By
G (t) = Oy (t)e 222t 4=1) 4 Cy(t)e (751 4 Cy

g2(t) = Dy (t)e~2e2lt=t-0) 4 D,(t)e~o2t=4-1) + Dy

where
_(t- tio1)? t—ti- 1 - !
A = T —od) T 23— od)  def(I-cf)  aa(l— o)
Al = T agp
1 + 1
40 = - ay t T @)
t—ti 1
Bi(t) = T 2a5(1 —ad)  40d(1—od)
t—t;1 1 1
Bl = i—ap Y - ,
Bu(t) = 1 + 1 t
3(t) = dd(1—ad) | ad(l-a}) ,
t—1t;_ 1 1 {
Gl =950 -a)) " 41 -a) ' (1-a})? E
C2(t) = —(1 — a%)? 11
Cs(t ! + . ‘
O~ g —ap " T-
Dilt) = 205(1 — o)
1
, D2(t) = —012(1 . a%)
1
Ds(t)
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t—ti-1 r- s
K(t—ti) = /0 e=A'G (eTeR) ds'

n(t) kaalt)

where
ku(t) = Ey (t)e(l“"’)(""-‘) + Ez(t)e‘(”"’)(“""‘) + Es(t)
fm(t) = Fl(t)e(l-az)(‘—ti-x) + F2(t)e-(l+a2)(t—ti—1) + F3(t)
ko (t) = Gl(t)e(l“”)("“") + Gg(t)e‘(”‘”)(““"‘) + G;(t)
;}22(0 = Hl(t)e(l—a'z)(t—ti—l) + H2(t)e—(1+02)(t-ti—1) + H;(t)
and
t— t,'_l 1
Ei®) = Tl —ap) 21— @)’
t—1ti t— 11
E2(t) - —2(1 +a2) 2(1+C¥2)2
En = 2012
T(1-ag)
__tote 1
Fl(t) - —2(1 - (Yz) 2(1 e 02)2 }
t—tiy 1
() = 2(1 + o) o0+ )
1+ ol
B0 ="t
1
G = 50— a)
Colt) =
2(t) 2(1 + az)
1
@0 ==
H,(t !
() 2(1 — ap)
H0) = =5

R




where

Thus,

and
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1
Hi(t) =
(1 - 0‘2)
Qh) = [P eETe " d
0
= Q ( ‘1111 (1112 ) (4.46)
W Wa
wi = Sl G a2)e(1“’2)hi _1-m0+ az)e—(l—i—az)h.‘ 20
2(1 — ay)? 2(1 + a3)? (1 — ad)?
1 e(l—az)hi -1 e-—(l+02)h,- -1
wlz——i( 1_042 1+a2
oy = T L e L+ hi(l+02) _(pann, |, 20+ 03)
2(1 — a)? 2(1 + a2)? (1 - a2)?
1 fe(l—adhi _ 1 o—(l+eadhi _ ]
B
n - ()
_ 0 1
- sinh h; coshh;
-1 coshh; -1
H' = ; : 4.47
i sinh h; ( —sinhh; 0 ) ( )
J——— (4.48)
sinhh; \ 0
n(hi) = H!Be™Q(h;)

M1 M2
1 7122




h; cosh h; h; cosh h;

2 + 2(1 - az) sinh h,‘

h,‘ cosh h,’ hi cosh h,‘

(_ hi 1
21+ )  2(1 + a2)?

B 2(1 + ag) sinh hi

h; cosh h;

1 1
(2(1 Tl T 1t ) *aa

— ag)?sinh by

h,’ cosh h,‘
2(1 + 012)2 sinh hi

cosh h;

1

2(1 — ay)sinh h;
cosh h;

) e(l—ag)hi_l_

(‘2(11 ar)

& )
(i
: 1—a2

I(i(t - t,'_1)77(h«i) =Q

This leads to

Ci(t) =

e—(1+az)h,
2(1 + az)sinh h;
cosh h,-)

Qo
sinh h;

7 =0
M2 =0

l:cll(t)ﬂu(hi) ’:‘312(t)7712(hi) ) QT
Ear(B)m(hi)  kax (8)ma(hi) .

Kit)n(hi) + G*(t)
_ ( kll(t)nll(hi) — gnlt) iﬁ?n(t)ﬂn(hi)

ka1 (8)mi(hi) — g (t) ka1 (t)ma(hi) — Goa(t)

( di(t) ¢t )
051 (t) 032 (t)

where

Cu( )=

Cilz( ) = @acn

~

k() (hs) — §u(t)
1(t) + ky1 (£)ma(hi) — §12(t)

c (£) = agen (8) + kay (O (hi) = g (t)

— g12(t) ) oT
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— (1 02)h|+
2(1 - 02)2 sinh h,‘

— —(1+az)h
2(1 + 012)2 sinh h;

(4.49)

(4.50)

(4.51)
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cho(t) = anen (t) + (b (H)ma(hi) — Gia(t)) + ko (£)ma(h) — §22(t)

bams—dn — (bume - §
Ciih) = QT e (ks = 912 | o1y
- (k217711 - 921) kum — g

[ @) Balhi)
) (E‘él(hi) E§2(hi)) (4.52)

where

|Cl = (fcll(hi)nu(hi) - gn(h,-)) (Egl(hi)nu(hi) - g22(hi)) _
(’E“(hi)ﬂm(hi) - 912(hi)) (kﬂ(hi)nll(hi) - §21(hi)) :

-1 _ C‘il(t) Czi (t) Eil(h'i) 32(hi)
cOeTh) = (ca(t) c£<t>) (eil(h,-) a‘;(h,-))
_ ( &, (Ren (t) + Sy (h)ew(?) ca?(hi)cu(t)+eaz(h,->cn(t>)

&, (hi)ear(t) + Ty (hi)ena(t) Tha(hi)ear(t) + Thalhi)ea(t)

(4.53) f
A4 [~ €0 ()] = ( A0 % ) (.54
where
Bu(t) = €240 {(1 = a(t = 1)) (1 = Ea (h)en (1) = G (ha)era(t)) } =

e2(t=t-1) {(t — ti-1) (Eil(hi)c?l(t) + Eﬁl(hi)cﬂ(t))} (4.55)
d)‘Z(t) — eaz(t—ti—l) {_.(1 — ag(t _ ti—l)) (E'iz(hi)cn(t) + E;z(h,’)CIQ(t))} +
eox(t=ti-1) {(t ~ti-1) (1 = p(hi)en(t) — 51é'z(hi)clﬂ(t))} (4.56)

Similarly,

A0 (hi)em M = ( hile) el ) (4.57)

* *
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where

() = 51780 [(1 — (t — i1))(1 + cahi) (G (Ra)en () + &y (hi)ena()) } +
g2t (3 — 51 )(1 + onhi) (&, (ha)en(t) + &y (h)en (1)) } +
ort=t=h) {21, (1 — an(t = tir)) (Ba(ho)en (t) + Fa(hen®) } +
eost=ti-1) {o2h, (el (Ri)en (t) + B (hi)en(t)) } (4.58)

and

y(t) = et {hy(1 — 0ot — tio1)) (&1 (ha)en () + &, (ha)enn(®)) } - :
et =) [yt — 1) (S (R)en (2) + &, (hen(®)} +
e@2tti-178) {(1 — ahy)(1 — et — ti-1)) (&a(h)en(t) + Ea(hi)ena()) } +
eertt=t=1=m) (1 — aphy) (Sp(hi)en (8) + & (hi)en(t))} - (4.59)

Thus, the resulting spline has basis functions which are linear combinations of 1, ¢,
£ emout, te—o2t, e—202t te—202t t2g—202t e(l—az)t’ te(l—aa)t’ e—(1+02)t, te-(1+o2)t,

Case 3(ii): ap = 0. In this case, the state matrix is in Jordan form and hence, G(t)

and K(t) may be computed directly as follows:

Az(g;).

On the subinterval [t;_1, %],

B
: Hi = ( BeF‘hi )
0 1
* = ( eh‘»__e—hi eh" +e—hl' ) (4.60)
2 2
1 —coshh; 1
H!'= ' 4.61
- ! sinh h; ( sinhh; O ) ( )
! 1 (1
H! = 4.62
: sinh h,‘ ( 0 ) ( )
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hi ' '
Q(hy) = /0 eFhi=$) g pTe=ATS g

Wil Wiz (4 63)
Wy W2

where
wil = h; — sinh h;
wi, = cosh h; — 1
w:izl = —wiz
wiy = sinh h;.
Also
T)(h,) = }I”BQ(hq)
— 1 T2 (4.64)
T T2
where 7;; = l—g;f]‘f—hm'h, M2 =1, 72y = 0, and 722 = 0. From equation (3.45),
t- [ Sd 1
K@) = / e (eTe) as’ (4.65)
0
ku®) ki(?) (4.66)
ka1 () kaa(?)
where
ki, (f) = —Esinh{ + coshi —1
ki2(f) = tcosht — sinht
k21 (f) = Sinht_
kop(f) = cosht —1
—hisinh(h;)+ —h;cosh(h;)+
Ki(h) = cosh(h;) — 1 — sinh(h;)

sinh(h;) cosh(h;) —1
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(4.67)

Wmmm=(k“ﬂkdﬂ)

kn(®) k(D)
where A

ku(®) = ku(@m

k(D) = ku@me

(@) = ka®m

koo (£) = k2 (D)ma

o= (120 1)

From equation (3.43),

. t—t; - s
Git) = (-1 / e~ 4% (é’{ / eFe=)g,b7 e"AT’dr> ds (4.68)
0 0

— gu(t) g12(?)
- (921('0 ggz(f)) (469)

where )
gu(t) = gfa +sinhf —tcosht

2 - _
g12(t) = 5 cosht + fsinht +1
- {2
gn(f) = cosht—1-
gzg(t—) = t_—sinhf

Lh3 + sinh(hi)— —ﬁ;k — cosh(h;)+
h; cosh(h;) hisinh(h;) +1

Gi(hi) =

2

cosh(h;) =1 — b h; - sinh(h)
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Thus,
ci(h) = K'(Hn(h)+G'(D)
_ k@) + gu(®) k@) + 9u2(D)
Ear(B) + gn(f) kanlf) + )
021(f) Co2 (f)
where
; _ (fsinhf — cosh + 1) (cosh h; — 1) AR -
() = b + tcosht + sinht
- 2
512({) “5
; 2 sinht _
() = -1- 3~ Snb (cosh h; — 1) +cosh ¢ (4.71)

f=t—t;y,i=1,...,n—1 Hence, whent =t we obtain £ = h;, and

Ci(h)) = Ki(hi)n(h) +G'(h)
_ ( l:cll(hi) + g1 (hi) %12(}%) + gia(hi)
ko (Ri) + g (hi)  kaz(hi) + go2(hi)

—_ Cill(hi) Cilg(hi)
= (cél(hi) c?'zz(hi)>' (4.72)

Furthermore,

o s (43, 30

_ en(hi) Cia(hi)
B e (hi) Caa(hi)

where d(Ci(h;)) denotes the determinant of C;(h;)) and is given by

d(Cl(h,)) = Cll(hi)CQQ(hi) - ClQ(hi)C‘ZI(hi). (473)




Therefore, from equation (4.31), we have the following:

A{—eA‘C(t—)C' ( ) ((1) f)_
( 1t ) ( en(®)en + ca(®)ear  c11(f)Cra + c12(f)C2 )

01 can(D)en + a2 (D)8 ca(f)e1z + ca2(t)Ca2
_ [ a® #0
* *
where
(1) =1 — [er1(B)en + cr2(t)eo + t(car(f)enn + co2(t)E21)]
and
$2(F) = T — [en1 (£)12 + €12(t) a2 + EHea1 (B)C12 + €22(t)C20)].
‘ Substituting for ¢;;(t), these equations simplify to:
.ot B . . - (1 —cosht)(cosh h; — 1)
$1(t) = 1+011t—021§+611g — cy1[sinh ¢ + sinh ]
and
_ 2 T .. - (1 —-cosht)(coshh; —1
¢2(f) = (1+512)t_6225+612E—012[31nht+ ( S;I)lilhi )]
Similarly,
AL —1 —Ah; 1t
€ C,(DC, (h,—)e = X
01
c11()en + c12(D)en  en()ér + c12()ea 1 —h;
C21(ﬂ011 + C22(ﬂ021 C21(f)012 + Co2(t—)c22 0 1
_ Di(t) ()
* *
where

W) = e + cr2(®)ear + tHea (0 + caa(E)En)]
= 1- ¢1([)
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(4.74)

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)
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and

Pa(f) = —hifeni ()T + cr2(t)ea + t(ca1 (B)E1 + e (t)Cn)]+
[011(5512 + Clg(i)égz + {(Cgl(aélg + ng(t—)égz)] (481)
= —hi(1— (D) +1— ¢a(t).

Thus, the spline obtained has basis functions which are linear combinations of 1, ¢, 2,83, et,
—t

and e




CHAPTER V
CONVERGENCE AND NUMERICAL RESULTS

Here, we will examine convergence rates for the spline approximant for case 3(ii)
and then give the results of computer simulations.

5.1 Results for a Nilpotent Matrix
Since the state matrix under consideration is 2 x 2 (that is m = 2), then it follows
that » = 0, and, from equation (4.18), the requirement u( () = ufi)l( t;) yields the

following:
Mi(h)) = ePPH'BQ(h)e™AT5-1 — Q(h)e™ 4"t
= (eF"H'B — I)Q(h)e~ A"t~
-1 cosh h; T
- sinh h; Q(hi)e_A ti—1
0 0
(5.1)
T M(h)e 0 = (d; &) (5.2)
&7 My(hy)e i C e A = ( di —hidi+e; ) (5.3)
where
; coshh; ;. _ coshh; ;
d; = [~wi; + _—hTwn bt [—wly + '_h‘h—‘*’zfz a1 (5.4)
cosh h; il cosh h; Wil
e; = [~wi; + wyJCla + [~wis + Woa|Cay (5.5)
sinh h; inh h;
Miyi(hip) = HBQ(hin)e e ATl
0 si hlh'+1 —ATy
= i Q(h)e ; 5.6
( o ) ) :9)
54
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éq‘A/Ii_H(h,’_,.l)eATt'.C_l = ( di+1 €i+1 ) (57)
é‘I‘A/Ii_}.l(hi+1)€ATtiC_le—Ahi+‘ = ( di+l —hdi+1 + €i+1 ) (58)
where
d.: —_ wg’leiﬁ.l + wé‘;lé&ﬂ-l (5 9)
i sinh h; 11 '

i+1 =i+l 41241

Wy Cp + Wy Cp2
i+l = : 5.10
citt sinh h; ( )

&T M,(hi)e A ™M C e 4 & My (hipa)e™* 01071 = (di+er —hdi+dz+er )
(5.11)
: T
Substituting in (4.18), with 7 = ( o; B ) , we obtain

(3 e nre(3)-

1 1

81
( diyy —hipdizr +ein ) ( ﬂﬂ ) =0 (5.12)
i+1

i=1,...p—1.

This gives

—e;Bi1 +(‘hidi+ei+ei+l).8i_(—hi+1di+1+ei+l)ﬂi+l = djoi_y —(di+diy1) i+ dip1 Qg

(5.13)
( y z 0 0 ... 0 \ [ B \ [ D, \
zy z 0 ...0 B2 docvy — (dy + ds)og + dzes
0z y z ...0 B3 dzoey — (M3 + dy)ag + dgay
: : : = : (5.14)
00 ...z vy =z Bp—2 Dy_o
Ty / \ Bp-1 ) K Dy /

—
o
o
(o]




56

where £ = —e;, y = —hd; + e; + ei11, and z = —(—hd;i;1 + €i11),
Dy = diog — (dy + d2)oy + daory + €55,

Dp_o =dp_s0p_3 — (dp—2 +dp_1)ap_3 +dp 1051,

and
Dp_1 = dp_la,,_g - (dp_l + dp)ap_l + d,,ap + (—hdi.H + ei+1)ﬁp-

Lemma 5.1 The coefficient matriz in equation (5.14) is strictly diagonally dominant

and hence nonsingular.

On solving the above system of equations for 3, we then apply equation (4.32) to
get, on each subinterval [t;_;,;], the spline function

Y(t) = qi—181(t) + Bi-162(t) 4 cvith1 (t) + Biypu(t) (5.15)

Here, ¢;, ¢2, 11, and 1, are given by Theorem (4.2).

5.2 Convergence of the Approximation

In this analysis, we will denote by s(t) the spline approximant, obtained by control
principles (given by equation (5.15)), of the function f(t). Error estimates for the
classical cubic spline have been discussed extensively; see, for example, references
[11, 19, 20]. In this section, we will obtain the convergence rates for our approximation
for case 3(ii); similar procedure will yield the error estimates for the other cases.
Furthermore, we restrict our analysis to the case of uniform mesh with mesh width
h. From equation (5.13), the spline approximation s(t) satisfies the equation

01 + yBi + 2Biy1 = dicioy — (di + dip1)ou + diroiyy (5.16)

where z = —e;, y = —hd; +e;+e€;41, and z = —(—hd;;1 +e;4;). Now, s(t) interpolates
f(t) at the mesh points P : to < t; < ... < ty; in other words, s(t;) = o; = f(t).
Clearly, 8; = s'(t;). Hence, equation (5.16) can be written as

xs;—l + yS: + zs;+1 =d;fi-1 - (dl + el)fi + ey fir1 (5.17)
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where &} = §'(t;) and f; = f(t:). For h sufficiently small, we have the following:
3
wy = h—sinhhz——ﬁ—
r? R
= hh-1~r —+ —
W12 cos 5 -+ Y
h* A
= - hh N =y .
wa coshh +1 Y (5.18)
Wy = sinh A

where, for each truncation, we have omitted terms that are of higher order in h than
the ones retained. Also, from equation (4.71):

h3
en(h) = T +sinhh — h — (cosh h — 1)?/sinh h

h2
C12(h) = ——2—
h2
en(h) = —% (5.19)
ng(h) = h.
Thus,
detC = cnc — C12€21
= h'/12 + hsinhh — h? — h(cosh h — 1)*/sinh b’ (5.20)
~ h%/120
511 = ng/dCt(C)%l?O/hs
Cla = —-cm/det(C')zGO/h“
Gy = —cy/det(C) =~ 60/h* (5.21)
Cyp = cu/det(C)zBO/ha
4 = [~w cosh h lé + +coshh Iz
i = 11 sinhhw2l 11 Wi sinhhw22 C1
~ —5/h°
& = [~w +coshhw e+ +coshh ¢
i = 1 —_sinhh 21]C12 w2 sinhhwn 22
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~ —3/2h
dot = wayCy1 + Wl
A sinh h
~ 5/h? (5.22)
e = wa1C12 + Walo
sinh h
~ T/2h.

Thus, we obtain the following:

—hdi+e e = 14/2h
—hdiy +eiy1 = —3/2’1 (523)

Theorem 5.1 Let f(t) € C? and let 6(t) = s(t) — f(t) be the error that results when
f(t) is interpolated by the spline s, defined above, on the partition P : 0 =1 <t} <
... < t, =1. Then there exists a constant K such that

|s = I < K| fO||R° (5-24)
To prove Theorem (5.1), we first discuss the following lemma.
Lemma 5.2 Let P be any partition of the interval [a,b]. If f(t) € C3[a,b], then

9(8) - £t < gl O (5.25)

for each node t;, 1 =0,1,...,pandt;_ <& < ti.

Proof:
Using equation (5.23), equation (5.17) may be written as
3 14 3 5 5
558:_1 + ﬁsi + 5-};3:+1 = —ﬁa.-_l + ﬁaiﬂ (526)
This simplifies to
10
33;_1 + 148; + 33;_},1 = —-E (f,'_l - fi+1) (527)

where we have used the interpolation data o; = f;. Suppose that each term of the
form f7) is expandable as:

f(r) _f(r):t} (r+1) h? (r+2):th3 (r+3) E‘_ (r+4)
i1 = Ji v fi +_2—fi ‘gfi +24fi
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Then, it can easily be shown, using Taylor’s formula, that

3h?

31+ 146, + 310 = 20+  (£"(6) + £"(64)) (5.28)

ti1 < & <ty If £ is continuous on [r;_;,T;y], then by the Intemediate Value

Theorem we may write
3fl_y +14f +3fl, = 20f + 3R*f"(£) (5.29)

Let s, — f! = E;. Then, subtracting equation (5.28) from equation (5.27) and
replacing f! with il’:[fi+1 — fiq] - %f“(f), we obtain

2
3E,'_1 + 14E1 + 3Ei+1 = '}-;—f(a)(f) (530)
That is,
GE=H (5.31)
where
(14 3 0 0 0\
3 14 3 O 0
0 3 14 3 0
a-| : .
0 0 ... 3 14 3
\0 0 ... 0 3 14

and H; = % G)(€). If we multiply both sides of equation (5.31) by the matrix
D = diag(1/14,...,1/14),

we obtain

DGE = DH (5.32)

and

DG = I+ B




60

[ 1 3/14 0 0 ... 0
3/14 1 3/14 0 ... 0
0 3/14 1 3/14 ... 0
= : 3 (5.33)
0 0 ... 3/14 1 3/14
\ 0 0 .. 0 314 1 }

where || Bl = 6/14 < 1. Thus, (DG)~! = (I + B)~! exists, (see reference [31}, p61).

Hence,

I(DG)™'DH|lw

I(DG) ™ lool| Dllool| H lloo
11
1- 5143

h?
17l

1 Elloo

IN

IA

£ (5.34)

IA

(4/27h%|| f®)|| for the classical case, see reference [19]). m

Now, to prove Theorem 5.1, we observe that 6(t) = s(t) — f(t) € C? and since
s(t;) = f(t:),1=0,1,...,p, we obtain, by the Mean Value Theorem,

t
5(1) = / 8'(r) dr (5.35)
ti—1

This gives

Il < [ 18

ti—1

< |16 max|(t — i) (5.36)
From equation (5.34),
h2
& < =|IfD.
I8 < S5
Hence,
R ]
sl < sy (5.37)

This completes the proof of the theorem.
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5.3 Numerical Examples

ALGORITHM FOR CONSTRUCTING THE CUBIC-EXPONENTIAL! SPLINES
To construct the spline interpolant s(t) for the function f(t), defined at the nodes
tg < t; < ... < t,, satisfying s'(to) = f'(to) and §'(t,) = f'(ta) :
INPUT A, b, F, B, n; to, t1, ...y ta; a1 = f(t1), -, @1 = f(tno1); Bo = f'(to);
Bn = f’(tn)'
OUTPUT B, k=1,2,...,n— 1.
Recall, from equation (5.15),

s(t) = a;_161(t) + Bic192(t) + aith1 (B) + Bina(t) for tiy St <
StepI Fori=0,1,...,n—1set by =¢; — t;.

Step II Compute Q(h,), C(t), ¢;, and ¥, 1 = 1,2, from equations (4.63), (4.70), (4.77),
(4.78), (4.80) and (4.81), respectively.
Step IIT Set

coshh; ; cosh h;

d = [—why 4 SO s (i, 4 SO
11 . .
[ Slnhhi 2111 [ 12 Slnhh,- 22] 21
coshh; . . . ' coshh; ;..
1 LI B P 1 t 113
€; = |~Wwj + Wy |Cig F+ |—Wiy + T We|C
[~wi sinh b, 2612 [~wis sinh b, - 22ic2
i+l i1 i+1=i+1
dipy = Woy Ci| + Wi Gy
1+1 — .
Smhh,-.H
i+1 =i+l i+1 zit1
_ Wy Cjy Wy C2
€i+1 = :
sinh h;yy

where w;; and ¢;; are the entries of the matrices 2 and C, respectively.

Step IV Set I} = djap — (dy + d2)ay + daa; + €3, and
ln—l = dn—la’n—.‘! - (dn—l + dn)an—l + dnan + eiﬂo»

Step V Set lj = djaj_l — (dJ -+ dj+l)dj + dj+10{j+1
=2 ...,n—1
Set L = (ll, lg, PN ,ln__2, ln_l)l.

185 called to reflect the fact that it contains cubic polynomials as well as exponential terms




A v - a— T

62

Step VI Form the tridiagonal matrix, M, with:
lower diagonal elements, -¢;,
diagonal elements, (—h;d; + €; + e;41, and
upper diagonal elements, —(—h;d;41 + €j4+1)-

Step VII Solve the system M3 = L.
Step VIII OUTPUT 8;,j=1,2,...,n—1.
Example 5.1 f(t) = sin(nt)
Consider the test function
f(t) = sin(nt), te€l0,1]
We set the boundary conditions:
Bo = —, /Bp =7

and then construct the spline function for A = 0.2,0.1,0.05. Graphs of the spline
function s(t) are shown in Figures 5.1 - 5.3.

Example 5.2 f(t) = e™%%
Consider the test function

Fi) =€, teo,1]
We set the boundary conditions:

Bo=0, B,=-30e"°

and then construct the spline function for A = 0.2,0.1,0.05. Graphs of the spline
function s(t) and its derivative are shown in Figures 5.4 - 5.6.

Example 5.3 For our third ezample, we consider the function
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0 if-1<t<0
fie)y=4 1/2 ift=0
1 if0<t <.

We set the boundary conditions:

:30=O) ﬂp=0

and then construct the spline function for n = 80. Graph of the spline function s(t) is
shown in Figure 5.7. In Figure 5.8 is the graph of this same function using the classical
quintic spline. Comparing these two figures, we see that there is an improvement over t

Liadeale 2 uaa b g

the classical quintic approximant. However, we must realise that the scheme used to
obtain Figure 5.7 contains only cubic terms. Further, only the first derivative of
the control law is used in this case. Increasing the order of the derivatives of the i
control law used in the cost function, J(u), will result in greater smoothness of the

interpolant.

g e 13

Y N TP A e Y D
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cubic-exponential spline with unitorm spacing,n=5
1 .2 Al T L} T T T T T L]

0.8 ’ p

0.4} . 1

0.2r 4

Figure 5.1: Function: f(t) = sin(rt),n =25

cubic-exponential spline with uniform spacing,n=10

s(t)

0.1 0.2 0.3 0.4 0.5 0.6 07 08 0.9 1

Figure 5.2: Function: f(t) = sin(nt),n =10

N —



s(t)

s(t)

cubic-exponential spline with uniform spacing,n=20

T T

T T T T T ¥

0.1 0.2

03 0.4 0.5 06 0.7 08

0.9

Figure 5.3: Function: f(t) = sin(nt),n =20

Spline approximation of f(t)=e(-101"3) with uniform spacing; n=5

T T T Y T T

T

0.1 0.2

Figure 5.4:

03 04 0.5 0.6 0.7 0.8

Function: f(t) = e 1% n =5
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Spline approximation of f(t)=e*{~10tA3} with unitorm spacing; n=10
1 .2 T T T T T L] T T L]

s(t)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Figure 5.5: Function: f(t) = e™1%",n = 10

Spline approximation of f(t}=e(-10tA3) with uniform spacing; n=20
1.2 T T T T T u Y T T

Figure 5.6: Function: f(t) = e™1% n = 20




cubic-exponential spline with uniform spacing, n=80

12

0.8

0.6

s(t)

0.4r

0.2

T T T T T T T T T

>

£y
L

-0.2
-1

Figure 5.7: Interpolation by control theory approach

-08 -06 -04 -02 0 0.2 0.4 0.6 0.8

classical quintic spline with uniform mesh n = 80

1.2

0.8

0.6

0.2r

T T T T T T T

=== — 3

2 1 It

i A 1

-0.2
il

-08 -06 04 -02 0o 0.2 0.4 0.6 0.8

Figure 5.8: Classical quintic interpolation
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